2 Check whether the following equations are consistent or inconsistent.
Solve them graphically.
3x + 2y = 5
2x - 3y = 7

Sol: Given equations, $3x + 2y = 5 \Rightarrow 3x + 2y - 5 = 0$ $2x - 3y = 7 \Rightarrow 2x - 3y - 7 = 0$

On comparing with $a_1x + b_1y + c_1 = 0$; we get, $a_1 = 3$; $b_1 = 2$; $c_1 = -5$ $a_2x + b_2y + c_2 = 0$ $a_2 = 2$; $b_2 = -3$; $c_2 = -7$

$$\Rightarrow \frac{a_1}{a_2} = \frac{3}{2} \quad ; \quad \frac{b_1}{b_2} = \frac{2}{-3} \quad \Rightarrow \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

. Given equations are consistent and they are intersecting

$$x = -1 \implies y = \frac{5-3(-1)}{2}$$
$$\implies y = \frac{5+3}{2} = \frac{8}{2} = 4$$
$$x = 1 \implies y = \frac{5-3(1)}{2}$$
$$\implies y = \frac{5-3}{2} = \frac{2}{2} = 1$$
$$x = 3 \implies y = \frac{5-3(3)}{2}$$
$$\implies y = \frac{5-9}{2} = \frac{-4}{2} = -2$$

$$\Rightarrow For 2x - 3y = 7 \Rightarrow 3y = 2x - 7 \Rightarrow y = \frac{2x - 7}{3}$$

x-125
$$y = \frac{2x-7}{3}$$
-3-11 (x, y) $(-1, -3)$ $(2, -1)$ $(5, 1)$

$$x = -1 \Rightarrow y = \frac{2(-1) - 7}{3}$$
$$\Rightarrow y = \frac{-2 - 7}{3} = \frac{-9}{3} = -3$$
$$x = 2 \Rightarrow y = \frac{2(2) - 7}{3}$$
$$\Rightarrow y = \frac{4 - 7}{3} = \frac{-3}{3} = -1$$
$$x = 5 \Rightarrow y = \frac{2(5) - 7}{3}$$
$$\Rightarrow y = \frac{10 - 7}{3} = \frac{3}{3} = 1$$

3x + 2y = 5

x	-1	2	5
$y = \frac{2x - 7}{3}$	-3	-1	1
(x , y)	(-1,-3)	(2 , -1)	(5 , 1)

: Intersecting point / solution is $\left(\frac{29}{13}, \frac{-11}{13}\right)$

2 Check whether the following equations are consistent or inconsistent.
Solve them graphically.
2x - 3y = 8
4x - 6y = 9

Sol: Given equations, $2x - 3y = 8 \implies 2x - 3y - 8 = 0$ $4x - 6y = 9 \implies 4x - 6y - 9 = 0$

On comparing with $a_1x + b_1y + c_1 = 0$; we get, $a_1 = 2$; $b_1 = -3$; $c_1 = -8$ $a_2x + b_2y + c_2 = 0$ $a_2 = 4$; $b_2 = -6$; $c_2 = -9$

$$\Rightarrow \frac{a_1}{a_2} = \frac{2}{4} = \frac{1}{2} ; \frac{b_1}{b_2} = \frac{-3}{-6} = \frac{1}{2} ; \frac{c_1}{c_2} = \frac{-8}{-9} = \frac{8}{9} \Rightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

. Given equations are inconsistent and they are parallel

$$\Rightarrow For 2x - 3y = 8 \Rightarrow 3y = 2x - 8 \Rightarrow y = \frac{2x - 8}{3}$$

x	1	4
$y = \frac{2x - 8}{3}$	-2	0
(<i>x</i> , <i>y</i>)	(1 , -2)	(4,0)

$$x = 1 \Rightarrow y = \frac{2(1) - 8}{3} = \frac{-6}{3} = -2$$
$$x = 4 \Rightarrow y = \frac{2(4) - 8}{3} = \frac{0}{3} = 0$$

$$\Rightarrow \text{For } 4x - 6y = 9 \Rightarrow 6y = 4x - 9 \Rightarrow y = \frac{4x - 9}{6}$$

x03
$$y = \frac{4x - 9}{6}$$
 $\frac{-3}{2} = -1.5$ $\frac{1}{2} = 0.5$ (x, y) $(0, -1.5)$ $(3, 0.5)$

$$x = 0 \Rightarrow y = \frac{4(0) - 9}{6} = \frac{-9}{6} = \frac{-3}{2}$$
$$x = 3 \Rightarrow y = \frac{4(3) - 9}{6} = \frac{3}{6} = \frac{1}{2}$$

2x - 3y = 8

x	0	3
$y = \frac{4x - 9}{6}$	$\frac{-3}{2}$ = -1.5	$\frac{1}{2}$ = 0.5
(<i>x</i> , <i>y</i>)	(0,-1.5)	(3, 0.5)

: Lines are parallel and have no solutions

2 Check whether the following equations are consistent or inconsistent. Solve them graphically.

$$x^{3} \frac{3}{2}x + \frac{5}{3}y = 7$$

9x - 10y = 12

Sol: Given equations, $\frac{3}{2}x + \frac{5}{3}y = 7 \implies 9x + 10y - 42 = 0$ (:: by LCM) $9x - 10y = 12 \implies 9x - 10y - 12 = 0$

On comparing with $a_1x + b_1y + c_1 = 0$; we get, $a_1 = 9$; $b_1 = 10$; $c_1 = -42$ $a_2x + b_2y + c_2 = 0$ $a_2 = 9$; $b_2 = -10$; $c_2 = -12$

$$\Rightarrow \frac{a_1}{a_2} = \frac{9}{9} = 1 ; \frac{b_1}{b_2} = \frac{10}{-10} = -1 \Rightarrow \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

. Given equations are consistent and they are intersecting

 $\Rightarrow \text{For } 9x + 10y - 42 = 0 \Rightarrow 10y = 42 - 9x \Rightarrow y = \frac{42 - 9x}{10}$

x	3	8
$y = \frac{42 - 9x}{10}$	1.5	-3
(<i>x</i> , <i>y</i>)	(3, 1.5)	(8 , -3)

$$x = 3 \Rightarrow y = \frac{42 - 9(3)}{10} = \frac{15}{10} = 1.5$$

$$x = 8 \Rightarrow y = \frac{42 - 9(8)}{10} = \frac{-30}{10} = -3$$

$$\Rightarrow \text{For } 9x - 10y = 12 \Rightarrow 10y = 9x - 12 \Rightarrow y = \frac{9x - 12}{10}$$

X	3	8
$y = \frac{9x - 12}{10}$	1.5	6
(<i>x</i> , <i>y</i>)	(3, 1.5)	(8,6)

$$x = 3 \Rightarrow y = \frac{9(3) - 12}{10} = \frac{15}{10} = 1.5$$
$$x = 8 \Rightarrow y = \frac{9(8) - 12}{10} = \frac{60}{10} = 6$$

x	3	8
$y = \frac{9x - 12}{10}$	1.5	6
(<i>x</i> , <i>y</i>)	(3, 1.5)	(8,6)

:. Intersecting point / solution = (3,1.5)= $(3,\frac{3}{2})$ 2 Check whether the following equations are consistent or inconsistent.
Solve them graphically.
3y = 11
-10x + 6y = -22

Sol: Given equations, $5x - 3y = 11 \implies 5x - 3y - 11 = 0$ $-10x + 6y = -22 \implies -10x + 6y + 22 = 0$

On comparing with $a_1x + b_1y + c_1 = 0$; we get, $a_1 = 5$; $b_1 = -3$; $c_1 = -11$ $a_2x + b_2y + c_2 = 0$ $a_2 = -10$; $b_2 = 6$; $c_2 = 22$

$$\Rightarrow \frac{a_1}{a_2} = \frac{5}{-1} = -\frac{1}{2} ; \frac{b_1}{b_2} = \frac{-3}{6} = -\frac{1}{2} ; \frac{c_1}{c_2} = \frac{-11}{22} = -\frac{1}{2} \Rightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

. Given equations are consistent and they are coincident

$$\Rightarrow$$
 For $5x - 3y = 11 \Rightarrow 3y = 5x - 11 \Rightarrow y = \frac{5x - 11}{3}$

x	1	4
$y = \frac{5x - 11}{3}$	-2	3
(<i>x</i> , <i>y</i>)	(1 , -2)	(4 , 3)

$$x = 1 \implies y = \frac{5(1) - 11}{3} = \frac{-6}{3} = -2$$
$$x = 4 \implies y = \frac{5(4) - 11}{3} = \frac{9}{3} = 3$$

$$\Rightarrow For -10x + 6y = -22 \Rightarrow 6y = 10x - 22 \Rightarrow y = \frac{10x - 22}{6}$$

x14
$$y = \frac{10x - 22}{6}$$
-23(x, y)(1, -2)(4, 3)

$$x = 1 \implies y = \frac{10(1) - 22}{6} = \frac{-12}{6} = -2$$
$$x = 4 \implies y = \frac{10(4) - 22}{6} = \frac{18}{6} = 3$$

5x - 3y = 11

$$-10x + 6y = -22$$

x	1	4
$y = \frac{10x - 22}{6}$	-2	3
(<i>x</i> , <i>y</i>)	(1,-2)	(4, 3)

: Lines are coincident and have infinite solutions

2 Check whether the following equations are consistent or inconsistent. Solve them graphically. f(x + y = 5) 2x + 2y = 10

Sol: Given equations, $x + y = 5 \Rightarrow x + y - 5 = 0$ $2x + 2y = 10 \Rightarrow 2x + 2y - 10 = 0$

On comparing with $a_1x + b_1y + c_1 = 0$; we get, $a_1 = 1$; $b_1 = 1$; $c_1 = -5$ $a_2x + b_2y + c_2 = 0$ $a_2 = 2$; $b_2 = 2$; $c_2 = -10$

$$\Rightarrow \frac{a_1}{a_2} = \frac{1}{2} \quad ; \quad \frac{b_1}{b_2} = \frac{1}{2} \quad ; \quad \frac{c_1}{c_2} = \frac{-5}{-10} = \frac{1}{2} \quad \Rightarrow \quad \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

. Given equations are consistent and they are coincident

$$\Rightarrow$$
 For $4x + 6y - 24 = 0 \Rightarrow 6y = 24 - 4x \Rightarrow y = \frac{24 - 4x}{6}$

x	0	3
$y = \frac{24 - 4x}{6}$	4	2
(<i>x</i> , <i>y</i>)	(0,4)	(3,2)

$$x = 0 \Rightarrow y = \frac{24 - 4(0)}{6} = \frac{24}{6} = 4$$

$$x = 3 \Rightarrow y = \frac{24 - 4(3)}{6} = \frac{12}{6} = 2$$

$$\Rightarrow For \quad 2x + 3y - 12 = 0 \quad \Rightarrow 3y = 12 - 2x \quad \Rightarrow y = \frac{12 - 2x}{3}$$

x03
$$y = \frac{12-2x}{3}$$
42(x,y)(0,4)(3,2)

$$x = 0 \Rightarrow y = \frac{12 - 2(0)}{3} = \frac{12}{3} = 4$$

$$x = 3 \Rightarrow y = \frac{12 - 2(3)}{3} = \frac{6}{3} = 2$$

4x + 3y = 24

x	0	3
$y = \frac{12-2x}{3}$	4	2
(<i>x</i> , <i>y</i>)	(0, 4)	(3, 2)

: Lines are coincident and have infinite solutions

 2 Check whether the following equations are consistent or inconsistent. Solve them graphically.
1 x + y = 5 2x + 2y = 10

Sol: Given equations, $x + y = 5 \Rightarrow x + y - 5 = 0$ $2x + 2y = 10 \Rightarrow 2x + 2y - 10 = 0$

On comparing with $a_1x + b_1y + c_1 = 0$; we get, $a_1 = 1$; $b_1 = 1$; $c_1 = -5$ $a_2x + b_2y + c_2 = 0$ $a_2 = 2$; $b_2 = 2$; $c_2 = -10$

$$\Rightarrow \frac{a_1}{a_2} = \frac{1}{2} \quad : \quad \frac{b_1}{b_2} = \frac{1}{2} \quad : \quad \frac{c_1}{c_2} = \frac{-5}{-10} = \frac{1}{2} \quad \Rightarrow \quad \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

Given equations are consistent and they are coincident

$$\Rightarrow$$
 For $x + y = 5 \Rightarrow y = 5 - x$

x	1	2
y = 5 - x	4	3
(x , y)	(1,4)	(2,3)

$$x = 1 \implies y = 5 - 1 = 4$$
$$x = 2 \implies y = 5 - 2 = 3$$

$$\Rightarrow For \ 2x + 2y = 10 \Rightarrow 2(x + y) = 10 \Rightarrow x + y = 5$$
$$\Rightarrow y = 5 - x$$

x	1	2
<i>y</i> = 5 - <i>x</i>	4	3
(x, y)	(1, 4)	(2, 3)

$$x = 1 \implies y = 5 - 1 = 4$$

$$x = 2 \Rightarrow y = 5 - 2 = 3$$

x + y = 5

x	1	2
y = 5 - x	4	3
(<i>x</i> , <i>y</i>)	(1, 4)	(2, 3)

: Lines are coincident and have infinite solutions

2 Check whether the following equations are consistent or inconsistent.
Solve them graphically.
3x - y = 8
3x - 3y = 16

Sol: Given equations, $x - y = 8 \implies x - y - 8 = 0$ $3x - 3y = 16 \implies 3x - 3y - 16 = 0$

On comparing with $a_1x + b_1y + c_1 = 0$; we get, $a_1 = 1$; $b_1 = -1$; $c_1 = -8$ $a_2x + b_2y + c_2 = 0$ $a_2 = 3$; $b_2 = -3$; $c_2 = -16$

$$\Rightarrow \frac{a_1}{a_2} = \frac{1}{3} \quad ; \quad \frac{b_1}{b_2} = \frac{-1}{-3} = \frac{1}{3} \quad ; \quad \frac{c_1}{c_2} = \frac{-8}{-16} = \frac{1}{2} \quad \Rightarrow \quad \left| \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2} \right|$$

. Given equations are inconsistent and they are parallel

$$\Rightarrow For \quad x - y = 8 \quad \Rightarrow y = x - 8$$

x	3	5
<i>y</i> = <i>x</i> - 8	-5	-3
(x, y)	(3 , -5)	(5 , -3)

$$x = 3 \implies y = 3 - 8 = -5$$
$$x = 5 \implies y = 5 - 8 = -3$$

$$\Rightarrow For \quad 3x - 3y = 16 \quad \Rightarrow 3y = 3x - 16 \quad \Rightarrow y = \frac{3x - 16}{3}$$

x12
$$y = \frac{3x - 16}{3}$$
-4.33-3.33 (x, y) $(1, -4.33)$ $(2, -3.33)$

$$x = 1 \implies y = \frac{3(1) - 16}{3} = \frac{-13}{3}$$
$$= -4.33$$
$$x = 2 \implies y = \frac{3(2) - 16}{3} = \frac{-10}{3}$$
$$= -3.33$$

x - y = 8

X	1	2
$y = \frac{3x - 16}{3}$	-4.33	-3.33
(<i>x</i> , <i>y</i>)	(1, -4.33)	(2, -3.33)

... Lines are parallel and have no solutions

2 Check whether the following equations are consistent or inconsistent.
Solve them graphically.
1 2x + y - 6 = 0
4x - 2y - 4 = 0

Sol: Given equations, 2x + y - 6 = 04x - 2y - 4 = 0

On comparing with $a_1x + b_1y + c_1 = 0$; we get, $a_1 = 2$; $b_1 = 1$; $c_1 = -6$ $a_2x + b_2y + c_2 = 0$ $a_2 = 4$; $b_2 = -2$; $c_2 = -4$

$$\Rightarrow \frac{a_1}{a_2} = \frac{2}{4} = \frac{1}{2} \quad ; \quad \frac{b_1}{b_2} = \frac{1}{-2} = -\frac{1}{2} \quad \Rightarrow \quad \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

. Given equations are consistent and they are intersecting

$$\Rightarrow$$
 For $2x + y - 6 = 0 \Rightarrow y = 6 - 2x$

x	1	2
<i>y</i> = 6 - 2 <i>x</i>	4	2
(<i>x</i> , <i>y</i>)	(1,4)	(2,2)

 $x = 1 \implies y = 6 - 2(1) = 4$ $x = 2 \implies y = 6 - 2(2) = 2$

 $\Rightarrow For \quad 4x - 2y - 4 = 0 \Rightarrow 2(2x - y - 2) = 0 \Rightarrow 2x - y - 2 = 0$ $\Rightarrow y = 2x - 2 = 0$

x	1	2
y = 2x - 2	0	2
(<i>x</i> , <i>y</i>)	(1, 0)	(2, 2)

$$x = 1 \implies y = 2(1) - 2 = 0$$

$$x = 2 \Rightarrow y = 2(2) - 2 = 2$$

$$2x + y - 6 = 0$$

$$4x - 2y - 4 = 0$$

x	1	2
y = 2x - 2	0	2
(<i>x</i> , <i>y</i>)	(1, 0)	(2, 2)

 \therefore Intersecting point / solution = (2, 2)

2 Check whether the following equations are consistent or inconsistent.
Solve them graphically.
2x - 2y - 2 = 0
4x - 4y - 5 = 0

Sol: Given equations, 2x - 2y - 2 = 04x - 4y - 5 = 0

On comparing with $a_1x + b_1y + c_1 = 0$; we get, $a_1 = 2$; $b_1 = -2$; $c_1 = -2$ $a_2x + b_2y + c_2 = 0$ $a_2 = 4$; $b_2 = -4$; $c_2 = -5$

$$\Rightarrow \frac{a_1}{a_2} = \frac{2}{4} = \frac{1}{2} \quad ; \quad \frac{b_1}{b_2} = \frac{-2}{-4} = \frac{1}{2} \quad ; \quad \frac{c_1}{c_2} = \frac{-2}{-5} = \frac{2}{5} \Rightarrow \quad \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

Given equations are inconsistent and they are parallel

$$\Rightarrow For \quad 2x - 2y - 2 = 0 \quad \Rightarrow 2(x - y - 1) = 0 \quad \Rightarrow x - y - 1 = 0$$
$$\Rightarrow y = x - 1$$

x	2	4
<i>y</i> = <i>x</i> - 1	1	3
(x , y)	(2,1)	(4 , 3)

$$x=2 \quad \Rightarrow y=2-1 \quad = 1$$

$$x = 4 \quad \Rightarrow y = 4 - 1 \quad = 3$$

$$\Rightarrow For \quad 4x - 4y - 5 = 0 \quad \Rightarrow \quad 4y = 4x - 5 \quad \Rightarrow \quad y = \frac{4x - 5}{4}$$

$\boldsymbol{\chi}$	0	2
$y = \frac{4x - 5}{4}$	-1.25	0.75
(<i>x</i> , <i>y</i>)	(0, -1.25)	(2, 0.75)

$$x = 0 \Rightarrow y = \frac{4(0)-5}{4} = \frac{-5}{4}$$
$$= -1.25$$
$$x = 2 \Rightarrow y = \frac{4(2)-5}{4} = \frac{3}{4}$$
$$= 0.75$$

2x - 2y - 2 = 0

$$4x - 4y - 5 = 0$$

X	0	2
$y = \frac{4x - 5}{4}$	-1.25	0.75
(<i>x</i> , <i>y</i>)	(0, -1.25)	(2, 0.75)

: Lines are parallel and have no solutions